Международный экспериментальный термоядерный реактор: последняя надежда человечества

Интересно

Более полувека предпринимались попытки обуздать управляемый термоядерный синтез (УТС), но до сих пор это не принесло желаемого результата. Более того, самоподдерживающая плазма так и не была получена, что делает невозможным её изучение. Неудивительно, что одной из фундаментальных проблем УТС является получение подобной плазмы. Нам неизвестно поведение плазмы при самоподдерживающейся термоядерной реакции.

К самому УТС мы приблизились насколько это можно было максимально, и его состоятельность считается доказанной. Так, например, на ТОКАМАКе "JET" в 1997 году была получена термоядерная мощность в 16 МВт, следствием чего стали образование гелия и выход нейтронов, которые сильно облучили камеру ТОКАМАКа.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Наведённая радиоактивность в камере не позволяла находиться там человеку, поэтому многие процессы были полностью роботизированы. Подобный опыт применяется и в строящемся международном экспериментальном термоядерном реакторе (ITER).

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Большинству государств, исследивших УТС, в середине 1970-х годов стало понятно, что без международного сотрудничества решить проблему обуздания УТС маловероятно.

В 1978 году по инициативе СССР началась работа над проектом международного термоядерного ТОКАМАКа-реактора «ИНТОР». И это несмотря на то, что в мире шло строительство ТОКАМАКов следующего поколения: JET (Европейский союз), JT-60 (Япония), Т-15 (СССР), TFTR (США). На них, благодаря самоподдерживающийся реакции, выход энергии планировался больше, чем затрачивалось на разогрев и поддержание плазмы (параметр Q больше 1).

По результатам эксперимента самым удачным оказался европейский «JET», где был установлен рекорд в термоядерной мощности (16 МВт, параметр Q = 0,68)

Самую лучшую плазму с самым высоким значением достигнутого тройного продукта синтеза (Дейтерий-Тритий; Дейтерий-Дейтерий; Дейтерий-Гелий 3) в 2010 году удалось получить на японском ТОКАМАКе "JT-60".

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Американский ТОКАМАК "TFTR" достиг рекордной температуры в 510 миллионов градусов Цельсия.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Российский ТОКАМАК "Т-15" закрылся из-за прекращения финансирования по всем нам известным причинам. Однако исследовательские работы, продолжавшиеся до 1995 года, позволили решить ряд проблем с плазмой, которые до этого возникали в ТОКАМАКах.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Проект международного экспериментального термоядерного реактора «ИНТОР» стал первой удачной кооперацией международной группы учёных, которые смогли проработать проект. За 2,5 года работы над проектом в нём были использованы все последние мировые достижения в области физики плазмы и инженерных, технологических разработок термоядерных реакторов.

Читайте также:  Психологи считают, что выбор дерева расскажет о вашей доминирующей черте личности

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Однако надежды, возлагаемые на ТОКАМАКи нового поколения, поставили крест на международной кооперации. Работа над проектами поодиночке привела к тому, что ни один из ТОКАМАКОв (JET, JT-60, Т-15, TFTR) так и не достиг запроектированных параметров.

Стало уже совсем очевидно, что без международной кооперации достичь УТС будет куда сложнее, дороже и дольше. А проблема УТС в мире уже назрела.

Дело в том, что если провести аналогию с атомной энергетикой, то в деле УТС мы находимся на уровне 1942 года, когда в США втайне был построен первый в мире ядерный реактор (СР-1), на котором была продемонстрирована возможность управляемой самоподдерживающейся ядерной реакции. Мощность реактора была всего 200 Ватт. Проект «ИНТОР» мог стать термоядерным аналогом первого исследовательского ядерного реактора, построенным в США в 1943 году.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Таким образом, при проектировании нового поколения ТОКАМАКов учёные рассчитывали получить и изучить до 2000 года самоподдерживающиеся термоядерные реакции в плазме.

  • До 2010 года должны были быть запушены первые экспериментально-промышленные термоядерные реакторы для отработки генерации электроэнергии.
  • В 2020 году должна была быть построена первая коммерческая термоядерная электростанция.

И эти планы, которые ставили учёные перед УТС в начале 1980-х годов, являлись пессимистичным прогнозом!

То есть учёные, будучи уверенными в достижении проектируемых параметров в УТС ТОКАМАКах (JET, JT-60, Т-15, TFTR), закладывали период в 35 лет от запуска экспериментальных ТОКАМАКов до постройки первой термоядерной электростанции.

Например, ТОКАМАК Т-15 вообще проектировался в СССР как будущий прототип термоядерной электростанции, который должен был стать переходным этапам от выработки электроэнергии углеводородами к выработке электроэнергии термоядерными реакциями.

В общем, как всегда, что-то пошло не так. И это «не так» озадачило всех в мире настолько, что к УТС начали относиться скептически. Начали появляться публикации с усомнениями в самой возможности УТС.

В России ярым противником УТС является специалист по ядерной физике и атомной энергетике, доктор технических наук, профессор Острецов И.Н.

В 1992 году Россия, ЕС, Япония и США заключили соглашение о проработке технического проекта Экспериментального Международного Термоядерного Реактора ITER( International Thermonuclear Experimental Reactor).

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Реализация проекта «ITER» началась 24 октября 2007 года. 35 стран создали научно-технический конгломерат, освободив разработку «ITER» от пошлин, санкций и прочих подобных ограничений.

Читайте также:  Живые организмы - биоинженерные проекты. Часть 8

Каждое государство, участвующее в проекте, получает 100% всех технологий и полную научную базу для возможности создания на своей территории подобного реактора.

На сегодня «ITER» – это самый сложный и один из самых дорогих научных проектов в истории.

В нём сосредоточены самые передовые технологии всех участников: технологии с завышенными стандартами, экспериментальные, и даже специально разработанные для проекта «ITER».

Инженерный проект «ITER» разработан с целью гарантированного получения самоподдерживающейся термоядерной реакции для последующего её изучения. Коэффициент Q должен быть равен 10, а термоядерная мощность равна 500 МВт. «ITER» создаётся для досконального изучения всех возможных ядерных процессов в плазме, протекающих при самоподдерживающийся термоядерной реакции. Цель «ITER» – получить знания и опыт в создании самоподдерживающейся термоядерной реакции, научиться управлять этим состоянием. Вторичные цели – это проработка разных методов термоядерных взаимодействий для получения новых изотопов, а также эксперименты с преобразованием нейтронного облучения в электрический ток.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Проект давно назрел, и без «ITER» мы ещё долго будем топтаться на месте. Но что самое главное, обуздание УТС – больше не какая-то секретная тайна военных, а открытая миру технология. Конкуренция в создании термоядерных реакторов в мире подошла к концу. Мы поняли, что прорывы в подобных проектах возможны только при условии общемирового сотрудничества.

Россия, внося вклад в проект «ITER» в размере 9%, получит, как и любая другая страна из конгломерата, все технологии и научные результаты для развертывания национальной программы УТС.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Учёные, сконцентрировав все последние достижения области физики плазмы, более чем уверены в результативности проекта «ITER».

Уверены настолько, что уже начались проработки проектов будущих термоядерных демонстраторов технологий в области генерации энергии.

  • Так, в Италии к 2025 году планируется сооружение сверхпроводящего ТОКАМАКа «DDT» для изучения энергетического выхода на основе уже полученного опыта при проектировании «ITER»
  • В США в 2025 году планируется строительство компактного ТОКАМАКа «SPARC» с термоядерной мощностью в 100 МВт.
  • В России после 2024 года планируется строительство самого компактного (в 38 раз меньше по массе, чем «ITER») в мире ТОКАМАКа «Игнитор» с термоядерной мощностью в 100 МВт, и отработка на нём концепции гибридной термоядерной электростанции.
  • Китай планирует строительство термоядерного реактора «CFETR», схожего с «ITER» по концепции, мощностью в 1 Гигаватт в 2030 году.
  • Великобритания планирует в 2040 году построить термоядерную электростанцию «STEP на сотни мегаватт.
  • Южная Корея после 2037 года планирует построить «K-DEMO» демонстрационную термоядерную электростанцию в 2,2 Гигаватта.
  • Проект международной демонстрационной термоядерной электростанции «DEMO» уже сегодня активно прорабатывается.
Читайте также:  «Гуманизм на костях»: как и чем воевали в эпоху Ренессанса и Реформации

Как видно, на проект «ITER» возлагаются большие надежды. Но что будет если даже он не сможет достичь требуемых от него параметров плазмы?

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Тогда в мире останется единственный путь реализации термоядерной энергетики в концепции гибридного термоядерно-ядерного реактора, где ТОКАМАК окружён делящимися под воздействием высокоэнергетического нейтронного облучения элементами, например, Ураном-238 и Торием-232.

Такая концепция гибридного термоядерного реактора считается наиболее разумной в следующем шаге УТС в России и Китае. Причём она вполне достижима даже при параметрах Q меньше единицы. Но об этом в следующей статье.

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Международный экспериментальный термоядерный реактор: последняя надежда человечества

Конец 5 части.

_____________________________________________________________________________________

Часть 1. Рождение термоядерной энергетики

Часть 2. Почему мы до сих пор не смогли построить термоядерный реактор? И сможем ли это сделать вообще?

Часть 3. Американская компания под руководством Чубайса готовит переворот в термоядерной энергетике

Часть 4. Российские учёные совершили революцию в термоядерной энергетике, открыв всему миру свои разработки

_____________________________________________________________________________________

В основе публикации использованы источники:

  • Физика плазмы (для магистров физического факультета НГУ)
  • На пути к энергетике будущего (учебное пособие), МИФИ, 2017
  • Атомная энергия, том 54, вып. 2, 1983 год
  • Международный экспериментальный термоядерный реактор (ITER)
  • О настоящем и будущем термоядерной энергетики
  • Термоядерные реакторы: есть ли у них будущее
  • Эра термоядерного синтеза
  • Проект ИТЭР (ВИДЕОРЕАКТОР)
  • ITER – the world's largest puzzle (2020 version)

Источник

Оцените статью